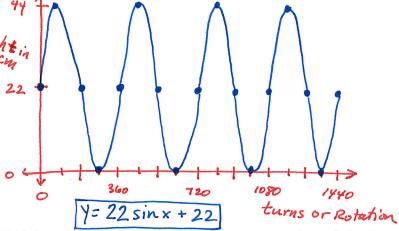
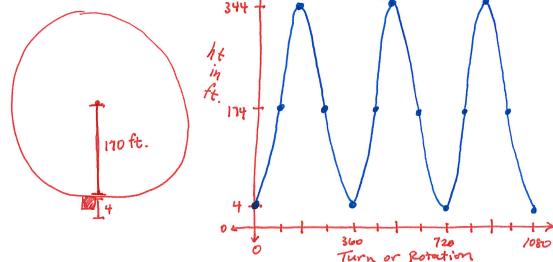

REVIEW OF MODULE 3

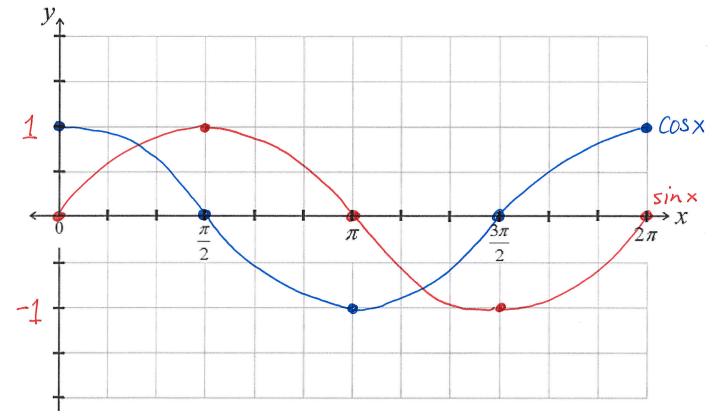

EXTENDED RESPONSE


NAME: Ke

1. A thumbtack is stuck to a bicycle tire. If the tire has a radius of 22 cm, sketch the height of the thumbtack above the ground as the tire rotates counterclockwise through 4 turns. Start your graph when the thumbtack is at the 3 o'clock position. Provide appropriate labels on the graph. Write the equation for the graph.

2. If a Ferris wheel with a diameter of 340 feet completes 3 turns and passengers board the Ferris wheel at the bottom (which is 4 feet above the ground), create a graph of a function that represents the height above the ground of the passenger car. Provide appropriate labels on the axes.

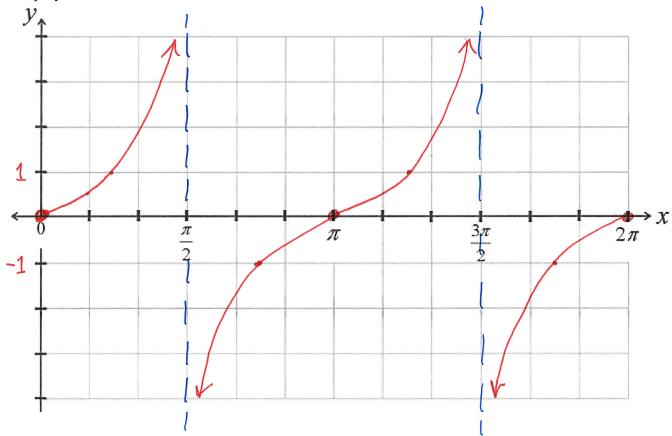
3. An oscilloscope is a machine that changes sound waves into electric impulses and shows their graph on a monitor. One such graph can be represented by the equation $A(t) = 12\sin(\frac{2\pi}{15}t)$ where t represents time in seconds. What is the period of the function?


$$P = \frac{2\pi}{F} = \frac{2\pi}{35} = 2\pi \cdot \frac{15}{35} = \frac{15}{35}$$

4. What is the maximum value of the function: $f(x) = 12 - 3\cos\left(\frac{3\pi}{2}x\right)$?

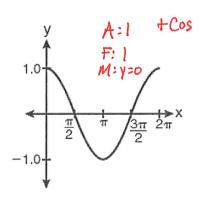
$$f(x) = -3\cos(\frac{3\pi}{2}x) + 12$$

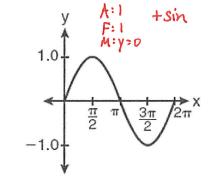
mid line = 12 - 3 9
Amp = 3

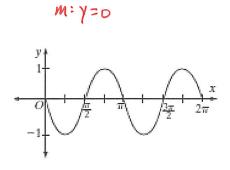

5. Using the domain of $0 \le x \le 2\pi$, graph the functions y = sinx and y = cosx on the same set of axes below.

- a) For what values of x does sinx = cosx? 145° 1225° m

 Rad 145° 145° 145°
- b) In what interval(s) are both y = sinx and y = cosx positive? $sin \Rightarrow o < x < \pi$ $cos \Rightarrow o < x < \pi$ and sin = sinx an
- c) In what interval(s) are both y = sinx and y = cosx negative?


6. Graph y = tanx on the set of axes below:




7. Complete the chart below based upon the graphs of y = tanx and y = sinx.

1	
Similarities	Differences
Both Start, end & have middle points on x-axis	Sin is continuous → tan has asymptotes @ # 3# → sin has max @ #2 min @ 2#2

8. Write an equation for each of the functions shown below:

-Sin

$$y = -\sin 2x$$

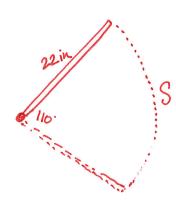
9. Complete the chart below:

θ	00	30 ⁰	45 ⁰	60 ⁰	90°	180 ⁰	270^{0}	360 ⁰
$sin\theta$	0	1/2	122	132	1	0	-1	0
cosθ	1	132	132	12	0	-1	0	1
$tan\theta$	0	V33	1	\(\sqrt{3}\)	Ø	0	Ø	0

10. Convert each of the degree measures below to radian measure.

3300	111	270 ⁰	3 <u>T</u>
225 ⁰	5 1 4	150 ⁰	5/0
90 ⁰	T-2	315 ⁰	7#

11. Convert each of the radian measures below to degree measure.


$\frac{5\pi}{6}$	150°	$\frac{11\pi}{6}$	330°
$\frac{2\pi}{3}$	120°	$\frac{3\pi}{4}$	135°
$\frac{\pi}{3}$	60°	$\frac{8\pi}{9}$	160°

12. State the amplitude, period, horizontal shift, and vertical shift for each of the following:

a)
$$y = 4\sin(2x + \pi) - 1$$

 $y = 4\sin(2(x + \pi)) - 1$

b)
$$y = -5\cos(6x - \frac{\pi}{7}) + 2$$

 $y = -5\cos(6(x - \frac{\pi}{42})) + 2$

13. Suppose a windshield wiper arm has a length of 22 inches and rotates through an angle of 110° . What distance does the tip of the wiper travel, to the nearest inch, as it moves from one side of the windshield to the other.

14. Verify the Pythagorean identity: $1 + tan^2x = sec^2x$

15. Verify this identity: $sec\theta - sin\theta tan\theta = cos\theta$

$$\frac{1}{C} - \frac{S}{1} \cdot \frac{S}{C} = C$$

$$\frac{1}{C} - \frac{S^{2}}{C} = C$$

$$\frac{1 - S^{2}}{C} = C$$

$$\frac{C^{2}}{C} = C$$

$$\frac{C^{2}}{C} = C$$

$$\frac{C \times \Theta}{COS\Theta} = COS\Theta$$

16. Given that $\sin^2 x + \cos^2 x = 1$, and $\cos x = \frac{-3}{4}$, find the value of $\sin x$

$$S^{2} + C^{2} = 1$$

$$S^{2} + (-\frac{3}{4})^{2} = 1$$

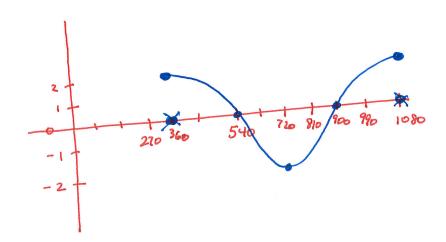
$$S^{2} + 9 = 1$$

$$-9 - 9 = 1$$

$$\sqrt{S^{2}} = \sqrt{16}$$

$$S = \pm \sqrt{7}$$

$$4$$


- 17. Write the equation of a graph satisfying all of the following conditions:
 - Sine
 - Period of 9π \longrightarrow $F = \frac{2\pi}{P} = \frac{2\pi}{9\pi} = \frac{2\pi}{9} = F$
 - Amplitude of 7 A
 - Shifted 3 down M: y = -3

$$Y = 7 \sin(\frac{2}{9}x) - 3$$

18. Graph ONE cycle of: $y = 2\cos\left(\frac{1}{2}x - \pi\right)$

$$Y = 2 \cos\left(\frac{1}{2}(x - 2\pi)\right)$$

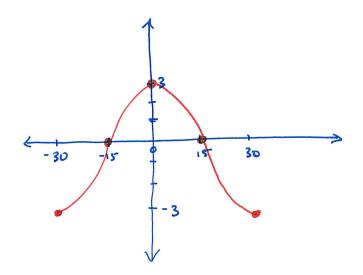
$$A \qquad F \rightarrow 360$$

A: 2

F: \(\frac{1}{2} \)

P: \(\frac{1}{2} = 720 \)

M: \(\frac{1}{2} = 720 \)


A: \(\frac{1}{2} = 720 \)

A:

19. Graph ONE cycle of:
$$y = -4\sin(3x + \pi) = -4\sin\left(3(x + \frac{\pi}{4})\right)$$

20. Graph ONE cycle of:
$$y = -3\cos(6x + \pi)$$

A:3